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Abstract. The master equation for the density operator of a system in a lossy cavity, which is coupled
to a squeezed bath, is generalized so as to include the effects of an enhanced loss through a mirror of
finite transmittivity. As compared to the standard master equation, which is valid for a nearly-perfect
cavity, the generalized master equation is found to contain additional terms that account for an effective
squeezed-light mixing at the nonideal mirror and for the interplay of the photon loss and the interaction
within the cavity. As an example, the new master equation is used to study the influence of the enhanced
losses on the photon statistics of a localized degenerate parametric oscillator. It is found that considerable
changes in the photon distribution can occur as soon as the quality of the mirror becomes less than perfect.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments – 42.50 Md
Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals,
optical nutation, and self-induced transparency – 42.50.Dv Nonclassical field states; squeezed, antibunched,
and sub-Poissonian states; operational definitions of the phase of the field; phase measurements

1 Introduction

The time evolution of damped quantum systems may be
described by means of master equations that incorporate
the loss effects through specific damping terms. In partic-
ular, master equations have been used frequently for the
description of quantum optical systems in lossy cavities.
The loss mechanism plays an essential role in analyzing
the behavior of these systems, since the radiation escap-
ing the cavity (for instance through a partly transparent
mirror) carries the information.

For nearly-perfect cavities, with mirrors of vanishingly
small transmittivity, the loss effects lead to damping terms
of which the form is well understood [1,2]. If the mirror
transmittivity becomes finite, the damping terms get a
more complicated structure, owing to the interplay of the
loss mechanism and the intracavity interaction. The “gen-
eralized” master equation that arises by accounting for
these enhanced losses has been established recently [3]. In
applying this equation to the time evolution of a decaying
atom in a cavity we have found that the effects of in-
creased losses can be quite substantial [4]. These findings
are in agreement with the predictions that follow from the
solution of delay differential equations for the probability
amplitudes [5]. It may be remarked here that the effects of
enhanced losses in cavities with a thin-slab geometry and
with infinite mirrors, as treated in [6], are rather different
from those discussed in [4,5] . In fact, in the slab configura-
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tion the atom-field system is always in the weak-coupling
regime, so that Fermi’s golden rule can be used.

The master equation discussed in [1,2] is valid provided
that the losses occur by radiation into a pure vacuum, or,
in other words, that the system is coupled to a vacuum
“bath”. The same configuration has been assumed in de-
riving the generalized master equation in [3]. Quite differ-
ent loss effects can be expected if the bath is in a different
state, for instance in a squeezed vacuum. This has been
demonstrated some time ago [7], by deriving the master
equation for a system in a nearly-perfect cavity coupled
to a squeezed vacuum.

As in the case of a pure vacuum bath, one may ask how
the damping terms for a system coupled to a squeezed
bath are modified, if enhanced losses are taken into ac-
count. It is the purpose of the present paper to answer
this question and to establish a generalized master equa-
tion for a system in a nonideal cavity with a squeezed
bath. To arrive at our goal we will start from a quantum
Langevin equation and analyze the statistical properties
of the associated stochastic force.

To show the influence of the increased losses in a spe-
cific example we will discuss a localized degenerate para-
metric oscillator coupled to a squeezed vacuum bath. In
this model the medium is confined to a thin slab in the cav-
ity. For the limiting case of a nearly-ideal cavity the prop-
erties of a degenerate parametric oscillator in a squeezed
bath have been investigated some time ago [8]. Applying
the generalized squeezed-bath master equation, we will
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determine the change in the photon statistics brought
about by an enhanced loss mechanism.

2 Generalized master equation

We consider a one-dimensional cavity with two mirrors
at a distance l. The cavity is assumed to be one-sided,
that is, one of the mirrors is perfectly reflecting, whereas
the other is semitransparent, with (amplitude) reflectiv-
ity r. By putting an additional perfectly reflecting mirror
outside the cavity, at a distance L of the semitransparent
mirror, a closed “universe” is obtained. The distance L is
taken to be much bigger than l and will be sent to ∞ at
a later stage.

The electromagnetic field in the universe may be quan-
tized in the usual way, by introduction of a basis of so-
called “universe modes”. The (positive-frequency part of
the) electric field operator inside the cavity then gets the
form [2,9]

E(ζ) =
1
√
L

∑
k

Mk sin(ωkζ/2)ak. (1)

Here ζ is the (dimensionless) position inside the cavity;
it is 0 at the ideal mirror and 1 at the semitransparent
mirror. The sum is extended over all universe modes with
(dimensionless) frequencies ωk, which are equidistant with
a separation 2πl/L in units of the inverse cavity round-
trip time c/(2l). Furthermore, the ak denote the annihi-
lation operators associated to each of the universe modes.
Finally, the mode amplitudes Mk are defined by

M2
k =

(Γ/2)(1 + Γ 2/4)1/2

Γ 2/4 + sin2(∆ωk/2)
, (2)

with the width

Γ = (1− |r|)/|r|1/2. (3)

The mode functions depend on the frequency through
∆ωk. It is the difference of ωk and a resonance frequency
ω0, which for a purely dielectric mirror satisfies the re-
lation tan(ω0/2) = |t|/(1 + |r|). In defining E we have
suppressed trivial prefactors that depend on ~, c, or that
vary slowly with the frequency.

As is clear from the general form of the mode func-
tions, the universe modes can be grouped in “quasimodes”
by choosing consecutive central frequencies ω0 and confin-
ing the frequency differences |∆ωk| to values smaller than
π. In the following we shall concentrate on the dynamical
behavior of a single quasimode. To indicate this we write a
prime at the symbol for the summation over the universe
modes. The weighted sum over the annihilation operators
occurring in (1) can be used to define a quasimode anni-
hilation operator b(ζ), by writing

E(ζ) =
1
√
l
N (ζ)b(ζ). (4)

The normalization factor N (ζ) is determined by

[N (ζ)]
2

=
l

L

∑
k

′ M2
k sin2(ωkζ/2), (5)

so that b(ζ) and its hermitian conjugate satisfy the stan-
dard commutation relation.

The above description in terms of quasimodes is par-
ticularly useful to study systems in cavities with matter
concentrated in such a way that effectively the interaction
with the electric field is confined to a single position ζ.
For such systems the Hamiltonian H for the interaction
between matter and field depends only on the quasimode
annihilation operator b(ζ) and the corresponding creation
operator b†(ζ), at least in the single-quasimode approxi-
mation.

To investigate the dynamical behavior of systems that
are governed by a single quasimode a reduced formulation
in terms of a master equation for the density operator
may be employed. In fact, from the master equation the
time evolution of the expectation value of any operator
depending on b(ζ) and b†(ζ) can be obtained in a straight-
forward way. In establishing the master equation one has
to specify the properties of the “bath”, of which the de-
grees of freedom are associated to (linear combinations of
the) universe modes that are independent of the quasi-
modes. Often either a vacuum bath or a thermal bath at
some finite temperature is considered [1,2]. More recently
squeezed baths have been investigated [7].

For one-sided cavities with a semitransparent mirror of
a vanishingly small transmittivity, a master equation can
be derived easily. If the transmittivity of the semitrans-
parent mirror is small but finite, the master equation gets
a more complicated structure. For a vacuum bath its form
has been derived recently [3]:

∂

∂τ
ρ(τ) = −

i

~
[H, ρ(τ)] + Γ

(
L+ L†

)
ρ(τ), (6)

with τ the time in units of the round-trip time. Here ρ(τ)
is the system density operator. The damping terms are
determined by the superoperatorL and its conjugate. This
operator is the sum of a standard damping operator Ls
defined by

Lsρ = [bρ, b†], (7)

and a correction term Lc which is a result of the interplay
of the Hamiltonian evolution and the damping effects. In
leading order in the mirror transmittivity it is given by

Lcρ = −
1

2
v(ζ)

[
i

~
[H, b]ρ, b†

]
. (8)

The function v(ζ) = v′(ζ) + iv′′(ζ) is defined by

v′(ζ) = −
2 cos(ω0ζ)

1− cos(ω0ζ)

×

[
ζ −

sin(πζ)

π
{ζψ[(ζ + 1)/2]− ζψ(ζ/2)− 1}

]
, (9)

v′′(ζ) = −2ζ
sin(ω0ζ)

1− cos(ω0ζ)
, (10)
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with ψ(x) the digamma function. The factor between the
(outer) square brackets in (9) can be shown to be positive.

In the following we wish to generalize the above gen-
eralized master equation still further by incorporating the
effects of a possible squeezing of the bath. Furthermore,
we want to analyze in more detail the transient behavior
for small values of τ that has been treated somewhat cava-
lierly in our earlier papers. As we shall see, these transient
effects manifest themselves in a time dependence of Γ for
small values of τ .

As a preliminary, we shall review briefly the main
points of our earlier derivation [3] of the generalized mas-
ter equation. One starts from the Heisenberg equation for
the time-dependent quasimode annihilation operator

b(ζ, τ) =
∑
k

′ φk(ζ)ak(τ), (11)

with the coefficients

φk(ζ) =

√
l

L
[N (ζ)]

−1
Mk sin(ωkζ/2). (12)

Suppressing the trivial time dependence associated with
the central mode frequency ω0 one finds an equation of
Langevin-type:

∂

∂τ
b(ζ, τ) = −Γb(ζ, τ) +

i

~
[H(ζ, τ), b(ζ, τ)]

+

∫ τ

0

dτ ′ [Γ − Γ (ζ, τ − τ ′)]F (ζ, τ − τ ′)

×
i

~
[H(ζ, τ ′), b(ζ, τ ′)] + f(ζ, τ), (13)

with the kernel function

F (ζ, τ) =
∑
k

′ φ2
k(ζ)e−i∆ωkτ (14)

and its logarithmic derivative

Γ (ζ, τ) = −
∂

∂τ
logF (ζ, τ). (15)

Clearly, F (ζ, τ) is equal to 1 for τ = 0. The stochastic
force in the Langevin equation is

f(ζ, τ) =
∑
k

′ φk(ζ)(Γ − i∆ωk)e−i∆ωkτak(0). (16)

As has been shown in [3], the kernel function is propor-
tional to exp(−Γτ) for τ � 1. In other words, its logarith-
mic derivative reduces then to Γ . Hence, the combination
Γ −Γ (ζ, τ) occurring in (13) is of short range, so that the
integral may be replaced by its Markovian approximation.
Likewise, it follows that the commutator [f(ζ, τ), b†(ζ, 0)]
is of short range. In fact, one derives[

f(ζ, τ), b†(ζ, 0)
]

= [Γ − Γ (ζ, τ)]F (ζ, τ), (17)

so that the stochastic force operator is associated with de-
grees of freedom that are independent of the system vari-
ables at τ = 0, if transient effects are neglected. In [3,4] we
assumed that these bath variables are in a vacuum state,
so that we could write f(ζ, τ)ρtot(0) = 0, with ρtot(0) the
density operator at τ = 0 for the total system (including
the bath).

3 Generalized master equation
with a squeezed bath

To show how the form of the generalized master equation
changes upon modifying the statistical properties of the
bath, we start by redefining the stochastic force. As we
have seen above, this force is independent of the system
variables, if transient effect are neglected. We want to in-
troduce now instead of f(ζ, τ) a modified stochastic force
f̄(ζ, τ), which strictly commutes with b†(ζ, 0) for all τ . A
way to achieve this is by defining

f̄(ζ, τ) =
∑
k

′ φk(ζ) [Γ (ζ, τ)− i∆ωk] e−i∆ωkτak(0)

= f(ζ, τ) − [Γ − Γ (ζ, τ)]
∑
k

′ φk(ζ)e−i∆ωkτak(0). (18)

Indeed, from the second form given here one easily proves
the commutation relation[

f̄(ζ, τ), b†(ζ, 0)
]

= 0 (19)

for all τ . By employing the formal solution of the
Heisenberg equations for ak(τ) one arrives at an alter-
native form for the modified stochastic force:

f̄(ζ, τ) = f(ζ, τ) − [Γ − Γ (ζ, τ)] b(ζ, τ)

+ [Γ − Γ (ζ, τ)]

∫ τ

0

dτ ′ F (ζ, τ − τ ′)

×
i

~
[H(ζ, τ ′), b(ζ, τ ′)]. (20)

Insertion in (13) yields

∂

∂τ
b(ζ, τ) = −Γ (ζ, τ)b(ζ, τ) +

i

~
[H(ζ, τ), b(ζ, τ)]

+

∫ τ

0

dτ ′ [Γ (ζ, τ) − Γ (ζ, τ − τ ′)]F (ζ, τ − τ ′)

×
i

~
[H(ζ, τ ′), b(ζ, τ ′)] + f̄(ζ, τ). (21)

This form of the Langevin equation is to be preferred to
the earlier one, as the stochastic force f̄(ζ, τ) occurring
here is completely independent of the system degrees of
freedom associated with b(ζ, 0) and b†(ζ, 0).

The integral contribution in the Langevin equation
(21) contains a kernel that is proportional to the differ-
ence of Γ (ζ, τ−τ ′) and Γ (ζ, τ). Both these functions tend
to Γ as their argument increases, so that their difference
is of short range in τ−τ ′. Hence, it is a reasonable approx-
imation to replace the integral by its Markovian form, as
before, and to write the Langevin equation in the form

∂

∂τ
b(ζ, τ) = −Γ (ζ, τ)b(ζ, τ) +

i

~
[H(ζ, τ), b(ζ, τ)]

+ χ(ζ, τ)
i

~
[H(ζ, τ), b(ζ, τ)] + f̄(ζ, τ). (22)

Here we introduced the function

χ(ζ, τ) =

∫ τ

0

dτ ′ [Γ (ζ, τ)− Γ (ζ, τ − τ ′)]F (ζ, τ − τ ′).

(23)
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Having rewritten the Langevin equation in such a form
that the stochastic force depends exclusively on the bath
degrees of freedom, we can turn to a derivation of the
master equation for a squeezed bath. From now on we
assume that the total density operator at τ = 0 is given
by a state with wideband squeezing, as defined in [10]:

ρtot(0) = S−1(z) | 0 〉〈 0 | S(z). (24)

Here the wideband squeeze operator is

S(z) = exp

[
−
z

2

∑
k

′ a†k(0)a†
k̄
(0)

+
z∗

2

∑
k

′ ak(0)ak̄(0)

]
, (25)

with k̄ defined by ∆ωk = −∆ωk̄.
For a wideband squeezed state it is no longer true that

f̄(ζ, τ)ρtot(0) = 0, since one has[
cosh(|z|)ak(0)−

z

|z|
sinh(|z|)a†

k̄
(0)

]
ρtot(0) = 0. (26)

One might think that a suitable linear combination of
f̄(ζ, τ) and its hermitian conjugate can be constructed
that gives 0 when acting from the left on the wideband
squeezed density operator. However, according to (18) the
stochastic force is built up from the annihilation operators
ak(0) with coefficients that are asymmetric under the in-
terchange of k and k̄. Hence, no such linear combination of
f̄(ζ, τ) and its hermitian conjugate can be found. In order
to proceed we introduce the symmetric and antisymmetric
parts of the coefficients φk(ζ):

φ
(±)
k (ζ) =

1

2
[φk(ζ)± φk̄(ζ)] . (27)

Correspondingly, we define the “even” and “odd” parts of
the stochastic force by writing

f̄(ζ, τ) = f̄ (+)(ζ, τ) + f̄ (−)(ζ, τ), (28)

with

f̄ (±)(ζ, τ) =
∑
k

′
{
φ

(±)
k (ζ) [Re Γ (ζ, τ)− i∆ωk]

+ iφ
(∓)
k (ζ)Im Γ (ζ, τ)

}
e−i∆ωkτak(0). (29)

In terms of these two parts of the stochastic force and
their hermitian conjugates one may construct suitable lin-
ear combinations that yield 0 when acting on the density
operator. In fact, one proves[

cosh(|z|)f̄ (±)(ζ, τ) ∓
z

|z|
sinh(|z|)f̄ (±)†(ζ, τ)

]
ρtot(0) = 0.

(30)

As shown in Appendix A, the properties of the two parts
of the stochastic force can be employed to derive a dif-
ferential equation that governs the time evolution of the

expectation value of an arbitrary operator built from the
system operators b(ζ, τ) and b†(ζ, τ). From that result one
derives the following master equation

∂

∂τ
ρ(τ) +

i

~
[H, ρ(τ)]

= Γ (τ) [(1− µ)Lzρ(τ) + µL−zρ(τ)]

− χ(τ) cosh2(|z|)

[
i

~
[H, b]ρ(τ), b†

]
− χ(τ) sinh2(|z|)

[
b†, ρ(τ)

i

~
[H, b]

]
+ ξ(τ)

z

|z|
sinh(|z|) cosh(|z|)

[
b†, ρ(τ)

i

~
[H, b†]

]
+ ξ(τ)

z

|z|
sinh(|z|) cosh(|z|)

[
i

~
[H, b†]ρ(τ), b†

]
+h.c. (31)

All explicit dependence on ζ has been suppressed here.
The first term at the right-hand side contains a linear
combination of two squeezed damping terms, with super-
operators Lw for w = z and w = −z. These are defined
as

Lwρ = cosh2(|w|)[bρ, b†] + sinh2(|w|)[b†, ρb]

−
w

|w|
sinh(|w|) cosh(|w|)

(
[b†, ρb†] + [b†ρ, b†]

)
. (32)

The linear combination of these superoperators is deter-
mined by the (real and positive) parameter

µ(ζ) = F (−)(ζ, 0) = 1− F (+)(ζ, 0), (33)

with the functions F (±) defined by

F (±)(ζ, τ) =
∑
k

′ φk(ζ)φ
(±)
k (ζ)e−i∆ωkτ , (34)

so that one has F (+) + F (−) = F according to (14)
and (27). Finally, the master equation contains two (com-
plex) coefficient functions that are integrals over F (ζ, τ),
F (±)(ζ, τ) and their derivatives. One of them is χ(ζ, τ),

which has been defined already in (23), while the other is:

ξ(ζ, τ) =

∫ τ

0

dτ ′
[
Γ (ζ, τ) +

∂

∂τ

]
×
[
F (+)(ζ, τ − τ ′)− F (−)(ζ, τ − τ ′)

]
. (35)

For small Γ simple approximations for the functions
F (±)(ζ, τ) can be found along the lines of [3]. For τ = 0
one finds

F (±)(ζ, 0) =
1

2
(1± 1)±

1

4
Γv′(ζ)

1 + cos(ω0ζ)

cos(ω0ζ)
, (36)

with the functions v′(ζ) and v′′(ζ) as defined in (9)–(10).
Hence, the parameter µ becomes for small Γ :

µ = −
1

4
Γv′(ζ)

1 + cos(ω0ζ)

cos(ω0ζ)
· (37)
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From (9) it is clear that the right-hand side is positive for
all ζ and ω0ζ. For τ � 1 both functions F (±)(ζ, τ) are
proportional to exp(−Γτ), with different prefactors:

F (±)(ζ, τ)

= e−Γτ
{

1

2
(1± 1)

[
1 +

1

2
Γv′(ζ)

]
+
i

4
Γv′′(ζ)

}
. (38)

Correspondingly, for τ � 1 the following approximate
time-independent expressions are found for the coefficient
functions in (31):

Γ (τ) = Γ, (39)

χ(τ) =
1

2
Γv(ζ) ≡ χ, (40)

ξ(τ) = −
1

2
Γ

v′(ζ)

cos(ω0ζ)
≡ ξ. (41)

Clearly, the coefficients satisfy the relation ξ−Re(χ) = 2µ.
Substituting these approximate expressions in (31) one
ends up with a simplified version of the master equation
that is valid only for τ � 1:

∂

∂τ
ρ(τ) +

i

~
[H, ρ(τ)]

= cosh2(|z|)

[{
Γb− χ

i

~
[H, b]

}
ρ(τ), b†

]
+ sinh2(|z|)

[
b†, ρ(τ)

{
Γb− χ

i

~
[H, b]

}]
−

z

|z|
sinh(|z|) cosh(|z|)

×

[
b†, ρ(τ)

{
(1− 2µ)Γb† − ξ

i

~
[H, b†]

}]
−

z

|z|
sinh(|z|) cosh(|z|)

×

[{
(1− 2µ)Γb† − ξ

i

~
[H, b†]

}
ρ(τ), b†

]
+ h.c., (42)

where (32) has been used. It should be noted that terms
with Γµ have been retained here. They are of the same
order of magnitude as the terms proportional to χ and ξ,
at least if the (dimensionless) coupling constant in H be-
comes of the order of Γ . This will indeed be the case in the
application of the master equation that we will consider
later on in this paper.

If the bath is not squeezed, the master equation (31)
reduces to a simpler form:

∂

∂τ
ρ(τ) +

i

~
[H, ρ(τ)]

=

[{
Γ (τ)b− χ(τ)

i

~
[H, b]

}
ρ(τ), b†

]
+ h.c. (43)

From this equation one recovers the master equation de-
rived previously [3], at least for τ � 1. Indeed, substitut-
ing (39-41) in (43), or, alternatively, putting z = 0 in (42),
one arrives at (6) with (7)–(8).

The master equation (31) and its approximate form
(42) are the main results of this section. They determine
the time evolution of the density operator for the quasi-
modes in the presence of a squeezed bath. Comparing
the new equations with the “standard” master equation
that is valid for a system in a nearly-perfect cavity one
finds several additional terms, which account for the en-
hanced losses, namely the terms proportional to µ, χ and
ξ. The terms proportional to µ lead to a modification of
the “pure” losses, i.e. the losses that are independent of
any interaction within the cavity. As can be seen from
(42), the loss terms that are typical for a squeezed bath
(i.e. the terms containing either two creation or two an-
nihilation operators) are multiplied by a factor 1− 2µ. In
contrast, the remaining “pure” damping terms, with a sin-
gle creation and annihilation operator, are left invariant.
A detailed discussion of these changes in the “pure” loss
mechanism will be given in the next section.

The other two parameters, χ and ξ measure the
strength of terms in the master equation that are of a
different type. A similar term is present also in the gener-
alized master equation (43) for a system in a nonsqueezed
bath. All these terms describe the interplay of the two
causes of the time evolution: the coherent interaction
within the cavity and the photon losses through the mir-
ror. If the mirror transmittivity is small, these two causes
contribute additively. Under those circumstances the pho-
tons stay within the cavity for many round-trip times, so
that the coherent interaction is felt more or less as in a
completely closed cavity. However, if the transmittivity
increases, the losses start to perturb the coherent inter-
action, since the photons do not stay long enough in the
cavity anymore. As a consequence, the interaction effects
can no longer be described by a simple commutator term,
as in the left-hand sides of (42) and (43). The precise way
in which the losses and the interaction get mixed up is
found to depend on the amount of squeezing: for a non-
squeezed bath it is governed by the parameter χ, whereas
in a squeezed environment it is determined by ξ as well.

In the absence of an intracavity interaction the master
equation (31) (or its simplified form (42)) can easily be
written in the general form given by Lindblad [11]. This
is no longer possible when interactions are taken into ac-
count. This need not come as a surprise, since in deriving
the master equation we had to replace the integral in the
Langevin equation (21), which depends on the interaction
Hamiltonian, by its Markovian form. As argued in the
paragraph above (22), this is a reasonable approximation
in view of the time dependence of the relevant integral ker-
nels, but the procedure is not exact. Hence, the Markovian
form of the Langevin equation, and of the resulting master
equation, can only be approximately valid for interacting
systems with enhanced losses. A strictly rigorous theory
for an interacting cavity system with enhanced dissipation
is expected to be non-Markovian. Nevertheless, a Marko-
vian master equation can yield quite precise predictions
for the time evolution of an interacting system even if the
damping is considerable, as we have shown in a previous
paper [4].
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4 Empty cavity with a squeezed bath

The generalized squeezed-bath master equation that we
have derived above incorporates the effects of a finite
transmittivity of one of the cavity mirrors. The conse-
quences of these effects on the statistics of the quasimode
excitations turn out to be nontrivial already in the sim-
plest case, namely that of an empty cavity, as we will show
in the following.

For an empty cavity, with H = 0, the generalized mas-
ter equation (42) reduces to

∂

∂τ
ρ(τ) = Γ [(1− µ)Lzρ(τ) + µL−zρ(τ)] + h.c., (44)

where we have used the same notation as in (31). At the
right-hand side a linear combination of two superoperators
Lz appears, with squeezing parameters z and −z. The
mixing of these damping operators is determined by the
parameter µ defined in (33), so that it is a consequence
of the mirror nonideality. Indeed, for the standard master
equation [7] one has µ = 0, so that no mixing occurs in
that case.

The master equation (44) is valid for large τ . In fact, it
describes the evolution of the density matrix in a regime
that is established after transient effects have damped out.
In the following the dimensionless time τ will be counted
from the inception of that regime, so that (44) is valid for
all τ ≥ 0.

The general time-dependent solution of a master equa-
tion of the form (44) has been studied before [12,13] by
means of phase space methods. Here we will use a differ-
ent method in order to elucidate the particular role of the
mirror nonideality. We consider the expectation value of a
product Ωp,q ≡ b†pbq of creation and annihilation opera-
tors, with nonnegative integers p, q. The master equation
(44) leads to the set of coupled differential equations

∂

∂τ
〈Ωp,q(τ)〉

= −(p+ q)Γ 〈Ωp,q(τ)〉 + 2pqΓ sinh2(|z|)〈Ωp−1,q−1(τ)〉

+ p(p− 1)(1− 2µ)Γ
z∗

|z|
sinh(|z|) cosh(|z|)〈Ωp−2,q(τ)〉

+ q(q − 1)(1− 2µ)Γ
z

|z|
sinh(|z|) cosh(|z|)〈Ωp,q−2(τ)〉,

(45)

from which 〈Ωp,q(τ)〉 can be determined successively for
increasing values of p+ q.

To get more insight in the solutions of (45) we con-
sider the expectation value of a product Ω̄p,q ≡ b̄†pb̄q of
a different annihilation operator b̄ and its corresponding
creation operator. This operator is formally defined as

b̄(τ) = e−Γτ b(0) + (1− µ)1/2
(
1− e−2Γτ

)1/2
c

+ µ1/2
(
1− e−2Γτ

)1/2
d. (46)

The operators c and d are annihilation operators of in-
dependent (bath) degrees of freedom, so that one has

[c, c†] = [d, d†] = 1 and [c, d†] = [c, b†(0)] = [d, b†(0)] = 0.
One may check that b̄(τ) and its hermitian conjugate sat-
isfy the standard commutation relations.

To define the expectation value of Ω̄p,q we have to
specify the statistics of the bath degrees of freedom. We
assume that the state of the degree of freedom correspond-
ing to c is a squeezed vacuum with parameter z, while that
corresponding to d is determined by a parameter −z. Of
course, the density operator of the degree of freedom of
b(0) is given by the initial condition of the master equa-
tion (44). The expectation value specified in this way will
be denoted by 〈〈. . . 〉〉.

Since the time dependence of b̄(τ) is known completely,
we can evaluate the time derivative of the expectation
value of Ω̄p,q. The result is

∂

∂τ
〈〈Ω̄p,q(τ)〉〉 = −(p+ q)Γ 〈〈Ω̄p,q(τ)〉〉

+ pΓ

[(
1− µ

1− e−2Γτ

)1/2

〈〈c†Ω̄p−1,q(τ)〉〉

+

(
µ

1− e−2Γτ

)1/2

〈〈d†Ω̄p−1,q(τ)〉〉

]

+ qΓ

[(
1− µ

1− e−2Γτ

)1/2

〈〈Ω̄p,q−1(τ)c〉〉

+

(
µ

1− e−2Γτ

)1/2

〈〈Ω̄p,q−1(τ)d〉〉

]
. (47)

Since the state associated to c is a squeezed vacuum, we
may write

〈〈Ω̄p,q(τ)c〉〉 =
z

|z|
sinh(|z|)

×

[
cosh(|z|)〈〈Ω̄p,q(τ)c†〉〉 −

z∗

|z|
sinh(|z|)〈〈Ω̄p,q(τ)c〉〉

]
. (48)

Bringing both c and c† to the left of Ω̄p,q(τ) by using
the commutation relations, and employing once again the
squeezing properties of the c-state, we arrive at the rela-
tion

〈〈Ω̄p,q(τ)c〉〉

= p sinh2(|z|)(1− µ)1/2
(
1− e−2Γτ

)1/2
〈〈Ω̄p−1,q(τ)〉〉

+ q
z

|z|
sinh(|z|) cosh(|z|)

× (1− µ)1/2
(
1− e−2Γτ

)1/2
〈〈Ω̄p,q−1(τ)〉〉. (49)

Similar relations can be found for products involving d,
c†, and d†. Employing these relations to evaluate (47) we
arrive at a set of differential equations which have the same
form as (45). Since for τ = 0 one has the trivial identity
〈〈Ω̄p,q(0)〉〉 = 〈Ωp,q(0)〉 it follows that the solutions of the
differential equations are the same for all τ ≥ 0:

〈Ωp,q(τ)〉 = 〈〈Ω̄p,q(τ)〉〉. (50)
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The identity (50) shows the way in which the expectation
value of an arbitrary product Ωp,q of quasimode creation
and annihilation operators changes in time. In fact, by
substituting (46) at the right-hand side one sees that as
time elapses the expectation value is gradually more dom-
inated by the statistics of the bath degrees of freedom,
whereas the initial condition of the quasimode tends to
be forgotten. In the following we will concentrate on the
statistics for infinite τ .

For τ → ∞ a simple result for the expectation value
emerges:

〈Ωp,q(τ →∞)〉

= 〈〈[(1− µ)1/2c† + µ1/2d†]p[(1− µ)1/2c+ µ1/2d]q〉〉. (51)

Hence, the statistics of the quasimode in a nonideal cavity
for infinite τ is the same as that resulting from the mixing
of two squeezed vacua, with opposite squeezing parame-
ters. Such a mixing may be accomplished by a semitrans-
parent mirror. In fact, if such a mirror with an (ampli-
tude) reflection coefficient (1 − µ)1/2 and a transmission
coefficient −iµ1/2 is irradiated from both sides by photons
in a squeezed vacuum mode with identical frequency and
squeezing parameter, the statistics of the outgoing pho-
tons is the same as that of the quasimode discussed here.
The statistics of squeezed light impinging on a semitrans-
parent mirror has been analyzed before with the use of
generation functions [14]. From that analysis one derives
the following distribution pn of the quasimode excitations
for infinite τ :

pn =
1− σ2

(1− σ2ρ2)1/2

[
σ2(σ2 − ρ2)

1− σ2ρ2

]n/2
×Pn

(
σ(1− ρ2)

(1− σ2ρ2)1/2(σ2 − ρ2)1/2

)
, (52)

where the Legendre polynomials and their prefactors at
the right-hand side depend on ρ ≡ 1 − 2µ and σ ≡
tanh(|z|). This result may also be derived from the so-
lution presented in [13].

The distribution gets a simple form for a nearly-perfect
cavity with µ� 1. In that case one finds

pn =
(n− 1)!!

n!!
σn(1− σ2)1/2 (53)

for even n, and pn = 0 for odd n. As has been dis-
cussed before in the context of squeezed light irradiating
a semitransparent mirror [14], the sharp distinction be-
tween even and odd n is washed out as soon as the mirror
ceases to be perfect, that is, as soon as µ differs from 0. In
fact, the statistics is quite sensitive to any nonideality of
the mirror: already for an (intensity) reflectivity of 0.975,
corresponding to µ = 0.025, the distinction between even
and odd n, which is characteristic of a squeezed vacuum,
has disappeared almost completely.

The phenomenon that we encounter here, namely that
dissipation tends to wash out nonclassical features in the
photon statistics of squeezed states, has been discussed
before [15–17]. A similar effect has been found to occur

in photon counting with less than perfect efficiency [15,
16,18,19]. As has been shown in [20], imperfect counting
can be incorporated in the theory by convolution of the
photon distribution with a binomial distribution. If that
procedure is applied to (53), one indeed ends up with a
distribution of the form (52), albeit with a different value
of σ.

The result (53) would have been obtained directly by
starting from the standard master equation for a damped
empty cavity in a squeezed bath. As we have seen, it loses
its validity for a cavity of which one of the mirrors is less
than perfect. Stated otherwise, application of the standard
master equation to a nonideal cavity with a squeezed bath
may easily lead to wrong results, at least for the empty
cavity case. A different and less trivial example will be
discussed in the following section.

5 Degenerate parametric oscillator
with localized interaction in a squeezed bath

In a degenerate parametric oscillator the presence of a
nonlinear medium within the cavity leads to a coupling of
a pump mode with a field mode at half frequency. If the
pump mode is treated classically, the effective Hamilto-
nian is proportional to the squared amplitude of the field
mode at the position of the nonlinear medium.

Some time ago [8] the effects of a squeezed bath on the
statistical properties of a degenerate parametric oscillator
have been studied in some detail. In that paper the authors
consider a cavity with nearly-perfect mirrors, for which a
master equation with standard damping terms [7] is ade-
quate. It was found that the intracavity photon statistics
in the stationary regime displays a growing even-odd dis-
parity, as the squeezing parameter of the bath increases.

The generalized master equation described above is a
suitable tool to investigate whether the results obtained
in [8] for an oscillator in a squeezed bath are robust when
the cavity ceases to be ideal. In a recent set of papers [21]
the degenerate parametric oscillator in a nonideal cavity
has been studied by means of the equations of motion for
right- and left-travelling waves. However, the effects of a
squeezed bath, which is the main focus of interest of the
present paper, were not considered in these articles.

To be able to apply our master equation we shall as-
sume that the medium is concentrated in a thin slice at a
position ζ in the cavity. This leads to a model with a lo-
calized interaction, for which the interaction Hamiltonian
depends exclusively on the annihilation and creation oper-
ators of a single quasimode associated to ζ. Adopting fur-
thermore the usual rotating-wave approximation we may
write the Hamiltonian of the localized degenerate para-
metric oscillator as

H = i~(κb2 − κ∗b†2), (54)

where the optical frequency has been eliminated by per-
forming a suitable transformation. Here κ is a (complex)
coupling constant, which is proportional to the field am-
plitude in the pump mode. We shall confine ourselves to
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a discussion of the localized degenerate parametric oscil-
lator below threshold.

As we wish to concentrate on the stationary regime,
we may start from the generalized master equation (42),
which is valid for large τ . Substituting (54) we get

∂

∂τ
ρ(τ)

= κ[b2, ρ(τ)] + cosh2(|z|)
[(
Γb+ 2κ∗χb†

)
ρ(τ), b†

]
+ sinh2(|z|)

[
b†, ρ(τ)

(
Γb+ 2κ∗χb†

)]
−

z

|z|
sinh(|z|) cosh(|z|)

[
b†, ρ(τ)

{
(1− 2µ)Γb† + 2κξb

}]
−

z

|z|
sinh(|z|) cosh(|z|)

[{
(1− 2µ)Γb† + 2κξb

}
ρ(τ), b†

]
+h.c. (55)

In view of our findings of the previous section we want
to determine the statistics of the quasimode excitations.
The method used above to find the statistics, namely solv-
ing a hierarchy of coupled differential equations for the
moments by comparison with a similar hierarchy for a
case treated before, cannot be employed here straightfor-
wardly, as the hierarchy turns out to be somewhat more
complicated. Instead, we shall study the density opera-
tor by using its Q-function representation Q(β, β∗, τ) =
π−1〈β|ρ(τ)|β〉, with |β〉 a coherent state associated to b.
It satisfies the Fokker-Planck equation:

∂

∂τ
Q(β, β∗, τ) =

[
c1

∂2

∂β2
+ c∗1

∂2

∂β∗2
+ 2c2

∂2

∂β∂β∗

+c3

(
∂

∂β
β +

∂

∂β∗
β∗
)

+ c4
∂

∂β
β∗

+c∗4
∂

∂β∗
β

]
Q(β, β∗, τ). (56)

The coefficients are defined as

c1 = κ∗ + Γρ
z

|z|
sinh(|z|) cosh(|z|)− 2κ∗χ sinh2(|z|), (57)

c2 = Γ cosh2(|z|)− 2ξ sinh(|z|) cosh(|z|)
Re(κz)

|z|
, (58)

c3 = Γ, (59)

c4 = 2κ∗(1 + χ), (60)

with ρ = 1−2µ, as before. Clearly, c1 and c4 are complex,
whereas c2 and c3 are real.

We are interested in particular in the stationary solu-
tion that is reached as τ tends to ∞. To find it we in-
troduce the characteristic function Q̃(λ, λ∗) = 〈exp(λb†)
× exp(−λ∗b)〉, which is proportional to the Fourier trans-
form of the Q-function [22]. Its stationary form is Gaus-

sian: Q̃(λ, λ∗) = exp(Aλ2 + A∗λ∗2 + 2Bλλ∗). The coeffi-
cients are found as:

A =
(c1c

∗
4 − c

∗
1c4)c∗4 + 2(c∗1c3 − c2c

∗
4)c3

4c3(c23 − |c4|
2)

, (61)

B =
(c1 − c4)c∗4 + (c∗1 − c

∗
4)c4 − 2(c2 − c3)c3

4(c23 − |c4|
2)

· (62)

Table 1. The minimum standard deviation of the field quadra-
ture Xα for a localized parametric oscillator with a squeezed
vacuum bath of squeezing parameter |z| = 2, at various values
of the interaction parameter s = κz/(Γ |z|) and of the dissi-
pation parameter Γ . The position of the oscillator is given by
ζ = 0.5 and ω0ζ = π/2 (mod 2π).

s Γ = 0.0 Γ = 0.01 Γ = 0.1

0.00 0.0046 0.0263 0.2217
−0.25 0.0031 0.0248 0.2190
−0.49 0.0023 0.0240 0.2151

0.25 0.0092 0.0309 0.2312
0.49 0.2289 0.2627 1.7147
0.25 i 0.9015 0.9028 0.9148
−0.25 i 0.9015 0.9363 1.2553

0.49 i 3.3103 3.2934 3.1442
−0.49 i 3.3103 3.3290 3.4897

As the characteristic function is the generating function of
the moments of the creation and annihilation operators,
one easily obtains the standard deviation of a field quadra-
ture Xα = (eiαb+ e−iαb†)/2, with arbitrary α. Varying α
we find the minimum value of the standard deviation as

〈(∆Xα)2〉min = −|A| −B + 1/4. (63)

In Table 1 we list the minimum standard deviation for the
case of a squeezed bath, at several values of the interaction
parameter |s| = |κ|/Γ and the dissipation parameter Γ .
For an ideal cavity the minimum standard deviation can
be written as:

〈(∆Xα)2〉min

=
1 + σ2 − 4σRe(s)− 2|s(1 + σ2) + σ(2|s|2 − 2s2 − 1)|

4(1− σ2)(1− 4|s|2)
,

(64)

with σ = tanh(|z|) and s = κz/(Γ |z|). If s is real
and negative, the minimum standard deviation decreases
for increasing |s|. In particular, for the ideal-cavity case
〈(∆Xα)2〉min decreases by a factor 2, when |s| goes to its
threshold value, as in the case with a nonsqueezed bath [8].
If the cavity becomes nonideal, however, the standard de-
viation changes much less. More importantly, the range
of values of 〈(∆Xα)2〉min for the nonideal cavity is quite
different from that found in the ideal case. In fact, for
Γ = 0.1 the minimum standard deviation for s = 0 is al-
ready near 0.25. Clearly, the squeezing due to the bath is
spoilt by the mixing effects at the semitransparent mirror,
as has been discussed already in the previous section.

If the phase of the (complex) interaction parameter s
is different from π, the picture changes. No longer do we
see a decrease of 〈(∆Xα)2〉min for |s| going to threshold.
On the contrary, it increases for all cases that have been
tabulated. For real and positive s we still find squeezing
for small values of s in the ideal cavity, but it is destroyed
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rapidly as the cavity becomes nonideal. For purely imag-
inary s we find rather large values of the minimum stan-
dard deviation.

The characteristic function can be used as well to de-
termine the probability distribution of the quasimode exci-
tations. Expanding the (Gaussian) characteristic function
in powers of λ and λ∗ and using the identity [24]:

[n/2]∑
k=0

n!

(n− 2k)!(k!)2

(
z2

4

)k
= (1−z2)n/2 Pn[(1−z2)−1/2],

(65)

with Pn the Legendre polynomials, one finds an explicit
expression for the expectation value of a product of cre-
ation and annihilation operators:

〈b†nbn〉 = n!(−2B)n
(

1−
|A|2

B2

)n/2
×Pn

([
1−
|A|2

B2

]−1/2
)
. (66)

From this result one easily derives the probability distri-
bution. First one defines the generating function

G(x) =
∞∑
n=0

xn

n!
〈b†nbn〉, (67)

of which the explicit form is [24]:

G(x) =
[
1 + 4xB + 4x2(B2 − |A|2)

]−1/2
. (68)

Subsequently, one uses the relation

G(x− 1) =
∞∑
n=0

xnpn (69)

to derive the quasimode probability distribution:

pn =
1

[(2B − 1)2 − 4|A|2]1/2

[
4(B2 − |A|2)

(2B − 1)2 − 4|A|2)

]n/2
× Pn

(
2(B2 − |A|2)−B

(B2 − |A|2)1/2[(2B − 1)2 − 4|A|2]1/2

)
. (70)

For κ = 0 one gets from (61)–(62):

A =
1

2
ρ
z∗

|z|
sinh(|z|) cosh(|z|),

B = −
1

2
sinh2(|z|). (71)

Inserting these expressions in (70) one recovers (52).
For κ 6= 0 the quasimode probability distribution is a

function of s, σ, ρ, χ and ξ, which is rather cumbersome to
study analytically. The expression simplifies considerably
for the ideal case of small cavity losses. Then both Γ and

κ are vanishingly small, at finite s, so that one has ρ = 1,
χ = 0 and ξ = 0. The probability distribution is found as

pn = (1− σ2)

(
1− 4|s|2

U

)1/2 (
V

U

)n/2
Pn

(
W

(UV )1/2

)
,

(72)

with the abbreviations

U = −σ4|s|2 + 2σ3Re(s) + σ2[4|s|2 − 2Re(s2)− 1]

−2σRe(s) + 1− |s|2, (73)

V = σ4(1− |s|2)− 2σ3Re(s) + σ2[4|s|2 − 2Re(s2)− 1]

+2σRe(s)− |s|2, (74)

W = σ4|s|2 − 2σ2Re(s2) + |s|2. (75)

Normalization of the probabilities implies the relation U+
V − 2W = (1 − 4|s|2)(1 − σ2)2, which is easily checked.
Both U and W are positive for 0 < σ < 1 and |s| < 1/2.
The sign of V depends on the values of s and σ. Clearly,
the ideal case discussed here is covered by the standard
master equation. Indeed, the result (72) is equivalent to
that obtained in [8] by means of the latter equation. For a
nonsqueezed bath the photon distribution derived in [25]
is recovered.

The change in the quasimode probability distribution
for increasing mirror transmittivity can be seen by evalu-
ating (70) numerically. An example is given in Figure 1.
Comparison of the distributions for an ideal cavity with
Γ ↓ 0 and nonideal cavities with Γ = 0.01 and 0.1, for
the same value of s, shows that the influence of the mir-
ror transmittivity can be considerable. As in the previous
section it is found that the even-odd disparity in the distri-
bution may disappear nearly completely as a consequence
of the leakage from the cavity, even though the squeezing
of the bath is rather high.

In conclusion, we have found that, when using a mas-
ter equation to study quantum optical systems in non-
ideal cavities, it is essential to start from an equation
in which the effects of the enhanced dissipation are in-
corporated systematically. The “standard” versions of the
master equation that have been formulated for systems in
nearly-ideal cavities [1,2,7] are not adequate for this pur-
pose. For systems with nonsqueezed baths we have reached
this conclusion before [3,4]. In the present paper we have
shown that the same holds true for squeezed baths.

Appendix A: Derivation of master equation

To derive the master equation (31) we start from the
Langevin equation (22) in Markovian form. It contains the
modified stochastic force f̄(ζ, τ) for which an expression
in terms of b(ζ, τ) and f(ζ, τ) has been given in (20). From
the formal solution of the Heisenberg equations for ak(τ)

ak(τ) = e−i∆ωkτak(0)

+ φk(ζ)

∫ τ

0

dτ ′ e−i∆ωk(τ−τ ′) i

~
[H(ζ, τ ′), b(ζ, τ ′)] (A.1)



192 The European Physical Journal D

0

0.2

0.4

0 10 20n

Pn
(a)

0

0.2

0.4

0 10 20n

Pn
(b)

0

0.2

0.4

0 10 20n

Pn
(c)

Fig. 1. The probability distributions pn for quasimode excitations of a localized parametric oscillator in cavities with (a) Γ ↓ 0,
(b) Γ = 0.01, and (c) Γ = 0.1 . The squeeze parameter of the bath and the interaction parameter are z = 2 and s = 0.25,
respectively. The position of the oscillator is given by ζ = 0.5 and ω0ζ = π/2 (mod 2π).

one may derive

f(ζ, τ) =
∑
k

′ φk(ζ)(Γ − i∆ωk)ak(τ)

−

∫ τ

0

dτ ′ [Γ − Γ (ζ, τ − τ ′)]F (ζ, τ − τ ′)

×
i

~
[H(ζ, τ ′), b(ζ, τ ′)] . (A.2)

As a consequence the modified stochastic force can be
rewritten as

f̄(ζ, τ) =
∑
k

′ φk(ζ)[Γ (ζ, τ) − i∆ωk]ak(τ)

−

∫ τ

0

dτ ′ [Γ (ζ, τ)− Γ (ζ, τ − τ ′)]F (ζ, τ − τ ′)

×
i

~
[H(ζ, τ ′), b(ζ, τ ′)]. (A.3)

Applying the Markov approximation in the integral, as
before, we arrive at

f̄(ζ, τ) =
∑
k

′ φk(ζ)[Γ (ζ, τ) − i∆ωk]ak(τ)

−χ(ζ, τ)
i

~
[H(ζ, τ), b(ζ, τ)], (A.4)

with χ(ζ, τ) as defined in (23). From this expression one
derives the commutation relation[

b(ζ, τ), f̄ (ζ, τ) + χ(ζ, τ)
i

~
[H(ζ, τ), b(ζ, τ)]

]
= 0. (A.5)

Expressions analogous to (A.4) can be established for the
“even” and “odd” parts of the stochastic force:

f̄ (±)(ζ, τ) =
∑
k

′
{
φ

(±)
k (ζ)[Re Γ (ζ, τ) − i∆ωk]

+iφ
(∓)
k (ζ)Im Γ (ζ, τ)

}
ak(τ)

−
[
χ(±)′(ζ, τ) + iχ(∓)′′(ζ, τ)

] i
~

[H(ζ, τ), b(ζ, τ)], (A.6)

with the abbreviations

χ(±)′(ζ, τ)

=

∫ τ

0

dτ ′
{

Re[Γ (ζ, τ)] +
∂

∂τ

}
F (±)(ζ, τ − τ ′), (A.7)

χ(±)′′(ζ, τ) =

∫ τ

0

dτ ′ Im[Γ (ζ, τ)]F (±)(ζ, τ − τ ′). (A.8)

Let us consider now the time derivative of the expectation
value of an arbitrary system operator Ω(ζ, τ) depending
on b(ζ, τ) and b†(ζ, τ). From now on we will suppress again
the variable ζ. Employing the Langevin equation (22) and
the commutation relation (A.5) we arrive at

∂

∂τ
〈Ω(τ)〉 =

i

~
〈[H(τ), Ω(τ)]〉 − Γ (τ)〈[Ω(τ), b†(τ)]b(τ)〉

− Γ ∗(τ)〈b†(τ)[b(τ), Ω(τ)]〉

+ χ(τ)
i

~
〈[Ω(τ), b†(τ)][H(τ), b(τ)]〉

+ χ∗(τ)
i

~
〈[H(τ), b†(τ)][b(τ), Ω(τ)]〉

+ 〈[Ω(τ), b†(τ)]f̄ (τ)〉 + 〈f̄†(τ)[b(τ), Ω(τ)]〉. (A.9)

To evaluate the terms with the stochastic force we write

f̄(τ) = cosh(|z|)f̄ ′(τ) +
z

|z|
sinh(|z|)f̄ ′′(τ), (A.10)

with

f̄ ′(τ) = cosh(|z|)
[
f̄ (+)(τ) + f̄ (−)(τ)

]
−

z

|z|
sinh(|z|)

[
f̄ (+)†(τ)− f̄ (−)†(τ)

]
, (A.11)

f̄ ′′(τ) = cosh(|z|)
[
f̄ (+)†(τ) − f̄ (−)†(τ)

]
−
z∗

|z|
sinh(|z|)

[
f̄ (+)(τ) + f̄ (−)(τ)

]
. (A.12)

As a consequence of (30) we have f̄ ′(τ)ρtot(0) = 0 and

f̄
′′†(τ)ρtot(0) = 0, so that the terms with f̄(τ) and its
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hermitian conjugate in (A.9) can be written as

z

|z|
sinh(|z|)

〈[
[Ω(τ), b†(τ)], f̄ ′′(τ)

]〉
+
z∗

|z|
sinh(|z|)

〈[
f̄
′′†(τ), [b(τ), Ω(τ)]

]〉
. (A.13)

The commutators are found by starting from (A.6) and
using the standard commutation relations for the creation
and annihilation operators. One finds then

〈[Ω(τ), f̄ ′′(τ)]〉 = − cosh(|z|)ξ(τ)
i

~
〈[Ω(τ), [H(τ), b†(τ)]]〉

+
z∗

|z|
sinh(|z|)χ(τ)

i

~
〈[Ω(τ), [H(τ), b(τ)]]〉

+ cosh(|z|)Γ (τ)(1− 2µ)〈[Ω(τ), b†(τ)]〉

−
z∗

|z|
sinh(|z|)[Γ (τ)− i

∑
k

′ φ2
k∆ωk]〈[Ω(τ), b(τ)]〉. (A.14)

Replacing Ω(τ) by [Ω(τ), b†(τ)], adding a similar expres-

sion with f̄
′′†(τ), and inserting the result in (A.9), we fi-

nally arrive at an identity for the time derivative of 〈Ω(τ)〉.
Since Ω(τ) is an arbitrary system operator, the identity
can be rephrased as a time evolution equation for the den-
sity operator. Its form is found to be that of (31), which
is thus proved.
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